0=-16t^2+150+50

Simple and best practice solution for 0=-16t^2+150+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+150+50 equation:



0=-16t^2+150+50
We move all terms to the left:
0-(-16t^2+150+50)=0
We add all the numbers together, and all the variables
-(-16t^2+150+50)=0
We get rid of parentheses
16t^2-150-50=0
We add all the numbers together, and all the variables
16t^2-200=0
a = 16; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·16·(-200)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*16}=\frac{0-80\sqrt{2}}{32} =-\frac{80\sqrt{2}}{32} =-\frac{5\sqrt{2}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*16}=\frac{0+80\sqrt{2}}{32} =\frac{80\sqrt{2}}{32} =\frac{5\sqrt{2}}{2} $

See similar equations:

| 2+1/2+3/5+2x=6 | | 4x2+16x-20=0 | | 2x-14=3x+5 | | d/8-4=16 | | 0.7(x-2)=-3 | | x+3(2x-3)=12 | | 3x-10+7x+3x-5=180 | | -1/2g=-11/3 | | x2-4x-5=0 | | -0.58x+0.28x=8.1 | | t/7=14 | | -39x^2+76x-32=-32 | | -3b/11+8b/22=5/11 | | 2x-8=2x-8+17 | | 4x–5=1+3x; | | 12=a-4/5 | | 2x2+8x+6=0 | | 2x=3x-19 | | -5a–8=-53 | | 4(w+2)-w=2(w-1)+19 | | -5u2+7u+4=0 | | 3-2v=-13 | | y=2(4)-5 | | 3=12y-5(2y) | | 8c-56=24 | | 3(y+2)=7y-30 | | 3x+4(2x-5)=24 | | -3=12y-5(2y) | | 48-(8j)=16 | | -9=-c2–11 | | n+-5=9-2n | | 9b+63=81 |

Equations solver categories